Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species.
نویسندگان
چکیده
Computational analyses of molecular phenotypes traditionally aim at identifying biochemical components that exhibit differential expression under various scenarios (e.g. environmental and internal perturbations) in a single species. High-throughput metabolomics technologies allow the quantification of (relative) metabolite levels across developmental stages in different tissues, organs, and species. Novel methods for analyzing the resulting multiple data tables could reveal preserved dynamics of metabolic processes across species. The problem we address in this study is 2-fold. (1) We derive a single data table, referred to as a compromise, which captures information common to the investigated set of multiple tables containing data on different fruit development and ripening stages in three climacteric (i.e. peach [Prunus persica] and two tomato [Solanum lycopersicum] cultivars, Ailsa Craig and M82) and two nonclimacteric (i.e. strawberry [Fragaria × ananassa] and pepper [Capsicum chilense]) fruits; in addition, we demonstrate the power of the method to discern similarities and differences between multiple tables by analyzing publicly available metabolomics data from three tomato ripening mutants together with two tomato cultivars. (2) We identify the conserved dynamics of metabolic processes, reflected in the data profiles of the corresponding metabolites that contribute most to the determined compromise. Our analysis is based on an extension to principal component analysis, called STATIS, in combination with pathway overenrichment analysis. Based on publicly available metabolic profiles for the investigated species, we demonstrate that STATIS can be used to identify the metabolic processes whose behavior is similarly affected during fruit development and ripening. These findings ultimately provide insights into the pathways that are essential during fruit development and ripening across species.
منابع مشابه
DNA Methylation and Chromatin Regulation during Fleshy Fruit Development and Ripening
Fruit ripening is a developmental process that results in the leaf-like carpel organ of the flower becoming a mature ovary primed for dispersal of the seeds. Ripening in fleshy fruits involves a profound metabolic phase change that is under strict hormonal and genetic control. This work reviews recent developments in our understanding of the epigenetic regulation of fruit ripening. We start by ...
متن کاملProteomic analysis of apricot fruit during ripening.
Ripening of climacteric fruits involves a complex network of biochemical and metabolic changes that make them palatable and rich in nutritional and health-beneficial compounds. Since fruit maturation has a profound impact on human nutrition, it has been recently the object of increasing research activity by holistic approaches, especially on model species. Here we report on the original proteom...
متن کاملConserved Changes in the Dynamics of Metabolic Processes during Fruit Development and Ripening across Species1[C][W][OPEN]
Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology an...
متن کاملGenome-wide identification of Hami melon miRNAs with putative roles during fruit development
MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate...
متن کاملIntegrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior.
Integrative comparative analyses of transcript and metabolite levels from climacteric and nonclimacteric fruits can be employed to unravel the similarities and differences of the underlying regulatory processes. To this end, we conducted combined gas chromatography-mass spectrometry and heterologous microarray hybridization assays in tomato (Solanum lycopersicum; climacteric) and pepper (Capsic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 164 1 شماره
صفحات -
تاریخ انتشار 2014